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ABSTRACT

Several estimators of variance of the ratio estimator in simple random
sampling have been proposed in Cochran (1977), Fuller (1981), Royall and
Cumberland (1978), Royall and Eberhardt (1975), Wu (1982). Their performances
are compared on nine populations that reflect different features of natural
populations encountered in practice. one criterion is the mean square error
of the variance estimator as a point estimator of the variance of ratio; the
other is the reliability of the associated t-interval. It turns out that the
two criteria are not consistent. The apparent contradiction is resolved by a
conditioning argument on an ancillary statistic, i.e., the reliability of the
t-interval can be predicted by the closeness of the corresponding variance
estimator to the conditional MSE of the ratio estimator on the ancillary
statistic. Based on the empirical study, the jackknife estimator vj and the
estimator v2  (and other asymptotically equivalent ones) are recommended.
The good performance of these estimators is attributed to their ability in
"capturing" the ancillary statistic.
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SIGNIFICANCE AND EXPLANATION

The ratio estimator is an important estimation method in sample surveys

when an auxiliary variable is available. There are many ways of estimating

its variance. Their empirical performances are compared on nine populations

according to two criteria. The more interesting one is the reliability of the

confidence interval based on the t-statistic (ratio estimator-population

mean)/estimated standard error. The jackknife variance estimator and other

(asymptotically equivalent) estimators are recommended for practical

purpose. Their good performance seems to be related to inference conditional

on an appropriate ancillary statistic.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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ESTIMATION OF VARIANCE OF THE RATIO ESTIMATOR:

AN EMPIRICAL STUDY

Chien-Fu Wu and Lih-Yuan Deng*

1. INTRODUCTION

This paper concerns the estimation of variance of the

ratio estimator under simple random sampling. While the

setting is simple, we hope this study will eventually lead

to better understanding of the important problem of variance

estimation in complex surveys. In fact even in this simple

setting, the problem of choosing "good" variance estimators

is unsettled. More than a dozen estimators, proposed in a

span of some thirty years, are listed in Rao (1969) and

Royall and Cumberland (1981). The majority of estimators

are design-based, i.e., their justification and choice are

based on the performance according to the probability

mechanism that generates the sample. A few others, proposed

by Royall and his collaborators, are model-based. According

to this approach, the inference should be made conditional

on the observed sample and a hypothetical superpopulation

model. The sampling design becomes irrelevant. Other

estimators, e.g. the jackknife, may not be justified

exclusively by either approach.

Previous work on the comparison of variance estimators

for ratio include, among others, Rao and Beegle (1967), Rao

(1968, 1969), Rao and Rao (1971), Rao and Kuzik (1974),

Royall and Eberhardt (1975), Royall and Cumberland (1978,

1981), Krewski and Chakrabarty (1981), and Wu (1982). The

theoretical comparison of various variance estimators is

made by assuming that the x and y populations satisfy

some linear regression models (superpopulations). Although

the results are sometimes exact, dependence on the

This paper will appear in the "Proceedinqs of the Conference

on Scientific Inference, Data Analysis, and Robustness"
(ed. by G.E.P. Box, et al.), Academic Press, New York, 1983.
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superpopulation parameters can be delicate. This prompted

Royall and Eberhardt (1975) to study the model-robustness of

some variance estimators. Their definition of robustness is

restricted to the bias behavior of the variance estimators

when the true parameters deviate from the assumed ones. Wu

(1982) gave the first model-free comparison of some variance

estimators by expanding the estimators and working on the

leading terms of the expansion. Such a comparison is large

sample in nature. On the empirical side, comparison is

conducted on either natural populations or artificial

populations simulated according to some superpopulation

models. The bias and/or mean square error of the variance

estimators are noted. Motivated by the prediction theory

approach, Royall and Cumberland (1981) took a different

approach by studying the conditional behavior of the

variance estimators as a function of the x-sample mean x.

They showed that some variance estimators can behave

drastically different over a range of the x values. They

further argue that the conditional (on x) mean of a

variance estimator should closely follow the conditional (on

x) mean square error of the ratio estimator. We will come

back to this point in §5 and §6.

The work to be presented is empirical and is in part

inspired by the very stimulating paper of Royall and

Cumberland (1981). Their approach to empirical study can be

further improved in three respects. They did not consider

estimator v2 defined in §2, which is motivated by the

probability sampling theory and is popular in practice. In

any effort to criticize the more traditional sampling theory

approach, it seems fair to consider both v0 and v2. See

also J. N. K. Rao's discussion of Royall and Cumberland

(1978). It will be shown later that v2  is better than

v. in several desirable respects. Their conclusion in

favor of the prediction theory approach could have been more

convincing had they included the stronger "rival" v2  in

their study. To remedy this we have included several

additional estimators in our study. The six natural

populations they chose look artificial in that they are all

well fitted by model (2), i.e. straight lines through the
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origin with increasing residuals. We consider nine

populations, six identical to theirs and three incorporating

violations of three key assumptions of the linear regression

model (2) that typically underlines the use of ratio

estimator. Detail is in 14. Besides studying the

conditional behavior of the variance estimators in

"tracking" the conditional MSE of the ratio estimator, an

innovation due to Royall and Cumberland, we also study the

bias and MSE of the variance estimators as estimators of the

unconditional MSE of the ratio estimator and, more

importantly, the actual coverage probabilities of the

associated interval estimates of the y-population mean

as compared with the nominal ones.

2. RATIO ESTIMATOR AND ITS VARIANCE

Suppose that a population consists of N distinct

units with values (y.,x.), where x. > 0 for 1 < i 4 N.

A simple random sample of size n is taken without

replacement from the population. Denote the sample and

population means of yi and xi by y,x and Y,X

respectively. The ratio estimator

X
y (Y

x

is a popular estimator of Y. It is simple to use in

practice. It combines efficiently the covariate information

in xi when yi and xi are roughly positively

correlated. It is the best linear unbiased predictor of

under the following superpopulation model (Brewer, 1963;

Royall, 1970)

Yi= axi + Li ' (2)

where L i are independent with mean zero and variance

a2 x i  The ratio estimator possesses other desirable

properties. For example, it is robust against extreme

values in the individual ratios yi/xi (Rao, 1978).

Traditionally the ratio estimator is favored over the

regression estimator mainly for computational ease in

handling large data sets. Given the present capacity of

computers this should be less of a concern. Fuller (1977)
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gave examples to show that ratio estimation can be much less

efficient than regression estimation. We believe it is time

that more attention should be given to regression

estimation.

There is no closed form for MSE yR or Var y R Both

can be approximated by the approximate variance (Cochran,

1977, p. 155)

Vappr = n N - I x - 2 (X3
1 X

where f - n/N is the sampling fraction. For large samples

the approximation is adequate. But for small sample size

(n 4 12) Vappr can seriously underestimate MSE (Rao, 1968

or Cochran, 1977, p. 164). The most standard estimator of

Vappr is its sample analogue

1 f 1 Yi 2
o n n - 1 x4

Some textbooks mention (but not endorse) v2 as an

alternativq to vo,

I 1- f 2 - 1 n - x.)2 . (5)
v2 n (- n _ i

x x

The original motivation for v - v2 /X2 as a variance
estimator of the ratio

R Y/X

is the unavailability of X. Both v0  and v2  are easy to

compute.

3. VARIANCE ESTIMATORS UNDER STUDY

Let ei 
= Y1 - Rxi be the residual from the straight

line connecting (X,Y) and the origin, _e = Y- " rxi,

r = y/x, be its sample analogue. Apart from a constant,2
V is the population mean of the residual square e .
appr
Estimation of Vappr can be viewed as the more typical

problem of estimating the population mean of a new
2characteristic e * By taking ei 2 ;ill v0  can be viewed

as the sample mean of ei and should be less efficient than

the ratio-type estimators v2 or
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V v I - f 1 1 e 2
1 -0 n n - 1 (6)

2 1

when xj and ei are positively correlated. A general

class of estimators

V v 0 (7)g -X

was proposed in Wu (1982). He proved that the leading term

of MSE(v ) is minimized byg

S
xzgopt $ 2i

x

= population regression coefficient of (8)

z i  x.
-- over -z x

where

2 N N
-. - 2 xI -/ e x,

S 2 and Sxz are the population x-variance and (x,z)-x
covariance respectively. The second term of zi accounts

for the possible nonzero intercept in the population when

fitted by a straight line according to (2). A (large-

sample) model-free comparison of v 2  and v0  readily

obtains. When and only when gopt > 1, v2  is better

than v0 . It may be easier to remember and to interpret the

following approximation to gopt (by ignoring the second

term of zi)

g' = population regression coefficient of

2
e. x (9)

---- over ---1 N2 
N e X
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By taking a sample analogue to 9opt

gopt - sample regression coefficient of

(10)
__i i--- over -

z x

n n n

z e 2 1 i , 2 - nz1 1 12

we obtain an asymptotically optimal estimator v. within
gopt

the class (7). Similarly we can take a sample analogue to

g = sample regression coefficient of

.2
ex. (11)

over -

n Zle i  x

and obtain another estimator v.
g

Instead of making a ratio adjustment to the sample mean
.2

of ei as in V1, Fuller (1981) suggested a regression

adjustment to v0 . Denote his estimator by

v =V - -b (X - X) (12)
reg 0 n 2ex

where

b 2= sample regression coefficient of
ex

e over xi

By standard Taylor expansion, the leading term of v- is
g

v and their asymptotic behaviors should be close.reg
Another estimator of interest is the jackknife variance

estimator

v (1 - f) ;2 n- D 2 (13)
= 1 D(j) ,

where D(j) is the difference between the ratio

(ny - y )/(nx - x ) and the average of these n ratios.

Royall and Cumberland (1981) and Krewski and Chakrabarty

-6-



(1981) studied the model-based and sampling properties of

vj. Note that the usual justification of jackknife is

independent of a superpopulation model.

Royall and Eberhardt (1975) suggested

c-2
x X C

VH v0 -2. (1 n y (14)

x

when x = x-mean of non-sampled units, CX = x-sample

coefficient of variation. Later Royall and Cumberland 4

(1978) suggested a closely related estimator

^2-cX 1  e.

VD M - (15)
n - n x.x I

nX

Both vH and vD are shown to be unbiased under model (2),

approximately unbiased for more general variance patterns,

and asymptotically equivalent to vi.

Another variance estimator, which follows from standard

least squares theory, is

xX ne2

v - f c 1 n eL
L n -2 n -7 X ix

It is unbiased under model (2) but can be seriously biased

if var(y i ) = o2x i in (2) is violated (Royall and

Eberhardt, 1975). Their empirical behavior has been shown

to be equally bad in Royall and Cumberland (1981). For

these reasons vL will not be considered in our study.

4. POPULATIONS UNDER STUDY

The preceding variance estimators are compared

empirically on nine populations listed in Table 1. The

first six are natural populations. The original data were

generously provided to us by Professors W. G. Cumberland and

R. M. Royall, to whom we wish to express our sincere

thanks. For more detailed description of these populations,

see their 1981 paper. The last three are transformations of

population 1. Their description follows. The first six

populations are plotted in Royall and Cumberland (1981,

p. 69-70). Though being natural populations, they are all
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TABLE 1. STUDY POPULATIONS

Population Description x y

Counties in NC, SC, and Adult white female Breast cancer

GA with 1960 white female population, 1960 mortality, 1950-69

population <100,000 (white females)

2 U.S. cities with 1960 Population, 1960 Population, 1970
population between

100,000 and 1,000,000

3 Counties in NC, SC, and Number of Population, excluding
GA with fewer than households, 1960 residents of group

100,000 households in quarters, 1960

1960

4 Counties in NC, SC, and Number of Population, excluding

GA with fewer than households, 1960 residents of group
100,000 households in quarters, 1970
1960

5 National sample of short- Number of beds Number of patients
stay hospitals with fewer discharged

than 1,000 beds

6 Corporations with 1974 Gross sales, 1974 Gross sales, 1975
gross sales between one-

half billion and fifty

billion dollars

7 Transformation of population I (see (17))

8 Transformation of population I (see (18))

9 Transformation of population I (see (19))

For sources of populations I to 6, see Royall and Cumberland (1981, p. 68).
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well described by straight lines through the origin using

weighted least squares. The squared residuals from the

fitted line increase roughly in proportion to x. More

refined models like a + 8x (linear regression with
2

intercept) and a + Ox + rx (quadratic regression) do not

differ significantly from the simpler linear-through-the

origin model 5x except possibly for population 5. To

represent broader range of real populations, we construct

populations 7, 8 and 9 from population I to reflect the

violation of three key assumptions underlying the linear-

through-the origin model (2): (i) zero intercept, (ii)

var(y i ) c xi, (iii) linearity of Ey i in x More

precisely, decompose the Yi value in population 1, denoted

old yi, into

old y. Rxi + (yi - Rx )

(16)

Yi+ e.

Define the new yi value in population 7 as

new y = old yi + Y ; (17)

for population 8,

new yi = ji + kx.e. , (18)

-1
with k = S1 and all units except two have y. ) 0; for

population 9,

O(x.-x)
new y = c0 [c1 -e 1 ] + e. (19)

where c = Sy, c I  0.1 + exp[8a max x. - Xjjwhr x y '

so that Yi > 0 for all i. uN 1

Populations 1, 7, 8 and 9 are shown below.

Some characterisics of the populations are given in

Table 2. Note that x and y are highly correlated

(> 0.94) for populations 1-4, 6, 7. The x and y of

the transformed populations 8 and 9 are less correlated.

Another point to observe is that Vappr can be smaller or

larger than MSE for sample size 32. There is no systematic

pattern in the percent underestimate or overestimate (last

-9-
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?AILE 2. 8063 POPULATION C(ARACT3RX8TZCI

I b 100(V -p MSE)
Population M P(S,i), H=2(v Y (y )a~

1 301 0.967 4.41 4.71 2.2

2 125 0.947 113.9 x 10 6 111.9 x 106 -1.6

3 304 0.996 33.6 x 104 32.4 x 104 -3.6

4 304 0.962 230.9 x 10 4 264.5 x 104 14.6

S 393 0.911 1941.0 1966.0 1.4

6 331 0.997 30.7 x 1014 35.7 x 1014 16.3

7 301 0.967 77.7 69.0 -11.2

8 301 0.605 44.3 47.6 7.4

9 301 0.624 44.6 43.0 -3.6

a. Correlation between x and y populations.
b. Uased on 1000 simulated samples.
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column of Table 2) in Vappr of MSE with only three of them

over ten percent. This is quite different from Rao (1968),

where he found that, for smaller sample sizes n = 4, 6, 8,

12, Vappr consistently underestimates MSE with average

percent underestimates ranging between 12% and 17%. The

discrepancy is explained in part by the difference in sample

sizes. More importantly, Rao's computation of Vappr and

MSE is apparently based on a particular superpopulation

model while ours is model free.

5. RESULTS

We draw 1000 simple random samples of size n - 32

from each population. For each sample we calculate the

ratio estima-6, yR and the variance estimates v0, v1 , v2,
, v ,e'v1 v n Note vi

Hopt , Note v gopt is

not really an estimator since gopt depends on the whole

population. We include it here to see how the asymptotic

results in Wu (1982) (or §3) predict the actual performance

for sample size 32. The MSE(yR) in Table 2 is calculated
-1 1000 . i)2

as 1000 (Y)R " over the 1000 simulated
1

samples. For each variance estimator v, its bias
-11000

bias(v) is calculated as 1000 v - MSE(y R over

the same 1000 samples, and its root mean-square error

/MSE (v) as (1000-1 1 - 2 over the sameS (v- MSE(yR))2)/ vrtesm

1R
1000 sample. Results are given in Table 3.

We first summarize the root mean square error behavior

of the ten estimators in Table 3 as follows.

(i) The asymptotically optimal estimator v
gopt

(pretending gopt is available) is the best or nearly the

best estimator in terms of minimizing MSE, as well predicted

by the asymptotic result of Wu (1982).

(ii) Among v0 , V1, v2, the best performer is

consistently the one closer to gopt* For example,

gopt " 1.59 in population 1 is closer to 2 and thus v2

has smaller /'MSE (2.20) than those (2.26 and 2.73) of

v I and v0  respectively. This is again predicted by the

asymptotic result of Wu (1982, 12.2).
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(iii) The estimators v., v.. and vrg are
g reg

asymptotically equivalent and are close to V . They all
gopt

give small /MSE. It is somewhat surprising that Vreg does

as well as v and better than v. and v. on
goptg g

populations 1-6 and 8. Reasons for the poor performance

of vreg on populations 7 and 9 are not known. The

estimators v, V. and vH are more stable in that they

perform reasonably well for all the populations.

(iv) The jackknife variance estimator vj is the

worst in terms of MSE. The instability of vJ was also

reported in Rao and Rao (1971), Rao and Kuzik (1974),

Krewski and Chakrabarty (1981). The performance of vD is

not good either.

The bias of each variance estimator is given inside the

parenthesis in Table 3. The results are summarized as

follows.

(i) The bias is usually a small proportion (say,

4 30%) of the total 4iii with a few exceptions for

populations 3, 7, 8, 9.

(ii) The estimators v0 , Vil v 2 are consistently

downward biased for estimating the MSE. The estimators

v,, v., and vreg , being close to one of v0 , v1  or V2,

are consistently downward biased. Another intriguing

phenomenon: among v0, Vl, V2 # those with smaller /MSE

tend to have bigger (in magnitude) bias.

(iii) The estimator vj is almost always upward

biased, while vH and vD exhibit no systematic pattern.

The downward biasedness of v0 was noted in Rao

(1968), Rao and Rao (1971). And the upward biasedness of

v Jwas noted in Rao and Rao (1971). Both are exact

analytic results whose validity depends on some particular

superpopulation models. Model-free (but asymptotic) results

on the bias of v0, v1 , v2, vj, VH have been obtained by

the first author. They will appear soon.

In estimating the population mean the purpose of

variance estimation is rather for assessing the variability

of the ratio estimator than for estimating the variance

itself. A more interesting and relevant criterion is the

-17-



behavior of the associated confidence interval. For each

variance estimator v and each simulated sample, we

consider the t-statistic

t R - 1(20)

and the (1 - a) confidence interval for estimating

(Y R - t a/2 (31) 6v, 'YR + t Q/21(31) v )  (21)

where t /2(31) is the upper a/2 point of the

t-distribution with d.f. - 31. The Monte-Carlo coverage

probability of the confidence interval' (21), given in Table

4, is calculated as the percentage of the 1000 intervals

(21) that cover Y. The bias, standard deviation and

coefficient of skewness of the associated t-statistic, given

in the last three columns of Table 4, are based on the 1000

t-values (20).

We now summarize Tible 4 in three parts: I. normality

of t-statistic, II. width of t-interval, III. reliability

of t-interval in te-Aa of the closeness of its Monte Carlo

coverage probability -c the nominal one.

I. Except fpr populations 4 and 9, the bias is close

to zero, the s.d. close to one and the coefficient of

skewness close 'o zero. Typically the t-statistic

associated with the estimator v0  is not normal, especially

with its large coefficient of skewness.

II. Since the squared length of the t-interval is

proportional to the expected value of v, from E(v) = bias

of v + MSE, we can use the bias entry of Table 3 in

assessing the width of t-interval. Since vi has positive

bias, the corresponding t-interval is wider. Similarly v0 ,

V1, V2 1  v., v. 1 vre all have negative bias. Their

t-intervals are shorter. The intervals associated with
v H and vD are in between the two extremes.

III. (i) Generally the coverage probability is lower

than the nominal level I - a. This may in part be

explained by the negative bias of v in most cases

(except vj and some cases of vH and vD ) The

-18-
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discrepancy is most serious in population 4 where the

t-statistics are "abnormal", and is serious in population 8

for 1 - a = 0.7, 0.8, 0.9.

(ii) The estimator v0  is least reliable in that the

actual coverage probability is far off the nominal level.

The most reliable one among the nine estimators is the

jackknife vj with VD as the second best. On populations

1 and 5-9 VD performs as well or nearly as well as v..

The performance of VH is comparable to VD (and

sometimes vJ) on populations 1, 2, 4, 5 and 7. Other

estimators V1, v2, v, V4., Vreg are comparable among each

other but trail slightly behind vH.

(iii) Among v0 , vi, V2 1  v2  is the best, v I the

middle and v0  the worst for most cases. A partial

explanation is that v2  is the only one among the three

that is asymptotically equivalent to vj, the best

performer.

The excellent performance of vi might be explained by

the large expected value Evil or equivalently the width of

the associated t-interval. In the same spirit, could the

better performance of v2  relative to v, and v I to

v0 be attributed to any similar behavior in their

t-intervals? As remarked in II they are all short

intervals, but from Table 3 the biases of v0, Vl, v 2  do

not exhibit any clear-cut pattern to support such claim. We

do not believe that the length of the interval alon-

explains the difference.

One obvious thing to observe from comparing Tables 3

and 4 is that, estimators like v, v.. v that performg g reg
well for estimating MSE(y R ) do not fare very well for
giving reliable interval estimate. On the other hand,

vJ, though having very large mean square error for

estimating MSE(y R), is extremely good in giving reliable

interval estimate. Perhaps the only consistent conclusion

from Table 3 and 4 is that v0  fares poorly in both

criteria. Since a variance estimator is primarily judged by

the quality of the associated interval estimator, an

important question thus arises: What properties of v as a

-24-



point estimator will provide a good guide in judging its

performance as an interval estimator?

We propose to take x as an ancillary statistic and

draw inference by conditioning on x. More precisely an

estimate of the conditional mean square error MSE(y Rx)

should be used in the interval estimate of y. In the

context of maximum likelihood estimation Efron and Hinkley

(1978) proposed a version of conditional variance (given an

appropriate ancillary statistic) for constructing reliable

interval estimate.

To see how different variance estimators perform in

tracking MSE(y RIx), we divide the 1000 samples into 20

groups of 50 samples according to the order of the

values. For each group we calculate the average of x,
50
I x/50, the conditional MSE of YR within the
1 50 2group, 50 R- -Y)2/50 and the averages of each of the

1 50

nine estimates, v0 = v0 /50, etc. We then plot the
1

values of NVMSE, N/ 0 NT and so on, against the

average values of x (the factor N is to make our plots

comparable to those of Royall and Cumberland (1981).) To

save space we only show the plots for populations 2 and 3 in

Figures 5 and 6. Plots for other populations exhibit

similar patterns. In Figu; s 5 and 6, the trajectories of

vi, V- , /- are omitted because they are too close tog reg D
the trajectories of , and fv respectively. One can

9 H
see that /v H, /VJ and v 2 seem to track the conditional

VMSE (trajectory) better than /V-- v' and /:v. Such a
0' 1 g

visual comparison of trajectories is somewhat arbitrary and

imprecise. Instead we consider a measure of distance (22)

between the hME-trajectory and any /;v-trajectory given by

20 V
10 - EI (22)

where the summation is over the twenty groups of values. If

the distance measure for a variance estimator v is

smaller, we say that v is closer to the conditional MSE of
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the ratio estimator. In Table 5 we list such values for

nine populations and nine estimators.

From Table 5 we can roughly rank the performance of the

nine estimators as

VHe vD > vJ, v 2 , v > V , Vreg > v1 > vo

where ">" means "better than". Again v0  is the worst,

V 1 the second worst. vH and vD are slightly better

than vi, v and v. And vie v are the mediocre2g g reg
performers. This is in general agreement with the results

of Table 4. We are thus led to the tentative conclusion

that

"Variance estimators that estimate the conditional MSE

of the ratio estimator better tend to give more

reliable interval estimates of the population mean."

It should be possible to justify theoretically this

statement at least by assuming a reasonable superpopulation

model between y and x.

The apparent contradiction between the unconditional

behavior of the variance estimators as point estimators of

the MSE of the ratio estimator (Table 3) and the reliability

of the associated interval estimators of the population mean

(Table 4) is now happily resolved. If the inference is made

conditional on an appropriate ancillary statistic, in this

case x, good performance of an estimator for estimating

the conditional variance often points to good performance of

the corresponding interval estimator. Therefore our

empirical finding lends further support to the work of Efron

and Hinkley (1978), although ours is for finite populations

and theirs for infinite populations and parametric models.

6. CONCLUSIONS AND FURTHER REMARKS

Based on the empirical study in 14 and §5 and the

theoretical discussion in J3, we arrive at the following

conclusions.

1) The estimator v0, (4), is the poorest among the

nine estimators considered in the paper. Its t-intervals

are not reliable and it does not estimate either the MSE or

the conditional MSE of yR well. However it is the most
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commonly recommended estimator in virtually every textbook

on sampling. (In fact some well-known textbooks do not even

mention the better estimator v2 ,) The "de-mystification"

of v0  is probably the most useful of all the

recommendations made in our paper.

2) Among v0 , vI, v2, v2  is better than v1  and

v 1better than v0  for giving reliable t-intervals. The

performance of v0 , v1  and v2  for estimating MSE depends

on the underlying populations and has no direct bearing on

the performance of interval estimates.

3) If more complicated computations are allowed (such

may be an issue for large scale surveys), we have more

choices. The jackknife v. gives very reliable t-intervals

and vH, vD are almost as good. Note that for large

samples, all three estimators are close to v2 , but not to

any other vg, g * 2. The reason that vj does so poorly

for estimating MSE is because it estimates the conditional

MSE well, and typically the conditional KS9 varies greatly

with x. This instability of v3  for estimating the

unconditional MSE has also been reported in previous papers

but should not concern us any more.

4) The estimators v., v. and vreg are

asymptotically equivalent. They are good for estimating the

unconditional MSE but are mediocre for giving reliable

t-intervals.

We emphasize that reliable t-intervals seems to be

related to the good performance of v for estimating the

conditional MSE. The problem of choosing a proper ancillary

statistic and making inference condit nal on it is an

important one in the theory of survey sampling.

Encouraged by the relatively good performance of v2

over v0 , we have considered the variance estimation

problem in other settings. For the regression estimator

under simple random sampling,

+ b(i - x), b -!Y
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the typical estimator of Var(yir) is (Cochran, 1977,

p. 195)

I\ 1-f I ~ - 2
var n n -(Yi - y - b(x -))

which is the sample analogue of the approximate variance of

Yr" It is natural to consider the following class of

estimators

9 var, especially g = 2
x

A detailed report will be available later.

In stratified random sampling with small sample size

per stratum, the combined ratio estimator is often used.
Let Wh - Nh/N be the hth stratum weight, Yh' Xh' Yh' Xh

be the y- and x-sample and population means of the hth

stratum. The combined ratio estimator is

y5- L L

ast 1

Its approximate variance is

L 1 - f h 1-I - 1 2

1 n Nh - 1 1 xhi xh

The following class of estimators

L 1-fh 1 nh (st 
- 2

)9 n nh (Yhi h (x hi h
X h 1 xst

has been considered by the first author (CFW). The case

g = 2 is of special interest. The detailed results will

be reported elsewhere.

Extensions in other situations are obvious.
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